Squaring: A New Way - Gonit Sora

13 मार्च 2017   |  मिताली गोयल   (108 बार पढ़ा जा चुका है)

If we square 11, it is very simple put 1(2*1)(12)get 121 same as square 12 put 1(2*2)(22) get 144 again for 13 we get 169 and for 14 we get 1 8 16=196 and so on.

When we go deep, we find that there is symmetry of two types

(2,4,6,8,10,12 ,14,16,18,20 …. Diff is always 2) &

(1, 4 , 9 ,16,25,36,49,64,81,100 ) diff. is 3 5 7 9 11 13 15 17 19 and diff. of 3 5 7 9 11 always 2, so there is true symmetry .

Up to 19 it is right but at 20 how we can put 1 20 100 just because of symmetry.

  • 112 = 1 2 1
  • 122 = 1 4 4
  • 132 = 1 6 9
  • 142 = 1 8 16 = 100 + 80 + 16 = 196
  • 152 = 1 10 25 = 100 + 100 + 25 = 225
  • 162 = 1 12 36 = 100 + 120 + 36 = 256
  • 172 = 1 14 49 = 100 + 140 + 49 = 289
  • 182 = 1 16 64 = 100 + 160 + 64 = 324
  • 192 = 1 18 81 = 100 + 180 + 81 = 361
  • 202 = 1 102 = 1 20 100 = 100 + 200 + 100 = 400
  • 212 = 1 112 = 1 22 121 = 100 + 220 + 121 = 441
  • 222 = 1 122 = 1 24 144 = 100 + 240 + 144 = 484
  • 232 = 1 132 = 1 26 169 = 100 + 260 + 169 = 529
  • 242 = 1 142 = 1 28 196 = 100 + 280 + 196 = 576
  • 252 = 1 152 = 1 30 225 = 100 + 300 + 225 = 625
  • 262 = 1 162 = 1 32 256 = 100 + 320 + 256 = 676
  • 272 = 1 172 = 1 34 289 = 100 + 34 + 289 = 729
  • 282 = 1 182 = 1 36 324 = 100 + 360 + 324 = 784
  • 292 = 1 192 = 1 38 361 = 100 + 380 + 361 = 841
  • 302 = 1 202 = 1 40 400 = 100 + 400 + 400 = 900

There is a symmetry, from here I got a method, which is shown as below for 31, 41, 51 and so on.

  • 312 = 1 212 = 1 42 (1 11)2 = 1 42 (1 22 121)

= 961 = 121 + 220 + 100

= 441 + 420 + 100 = 961

  • 412 = 1 312 = 1 62 (1 21)2 = 162 (1 42) (1 11)2

= 1 62 (1 42) (1 22 121)

= 1 62 (961) = 961 + 620 + 100 = 1681

  • 512 = 1 412 = 1 82 (1 31)2 = 1 82 (1 62) (1 21)2

= 1 82 (1 62) (1 42) (1 11)2

= 1 82 (1 62) (1 42) (1 22 121)

= 1 82(1681) = 1681 + 820 + 100 = 2601

  • 612 = 1 512 = 1 102 (41)2 = 1 102 (1 82) (1 31)2

= 1 102 (1 82) (1 62) (1 21)2

= 1 102 (1 82) (1 62) (1 42) (1 11)2

= 1 102 (1 82) (1 62) (1 42) (1 22 121)

= 1 102 (2601) = 2601 + 1020 + 100 = 3721

  • 712 = 1 612 = 1 122 (1 51)2 = 1 122 (1 102) (41)2

= 1 122 (1 102) (1 82) (1 31)2 = 1 122 (1 102) (1 82) (1 62) (1 21)2

= 1 122 (1 102) (1 82) (1 62) (1 42)(1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121)

= 3721 + 1220 + 100 = 5041

  • 812 = 1 712 = 1 142 (1 612) = 1 122 (1 51)2 = 1 122 (1 102) (41)2

= 1 122 (1 102) (1 82) (1 31)2 = 1 122 (1 102) (1 82) (1 62) (1 21)2

= 1 122 (1 102) (1 82) (1 62) (1 42)(1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121)

= 5041 + 1420 + 100 = 6561

  • 912 = 1 812 = 1 162(1 712 ) = 1 142 (1 612) = 1 122 (1 51)2

= 1 122 (1 102) (41)2 = 1 122 (1 102) (1 82) (1 31)2

= 1 122 (1 102) (1 82) (1 62) (1 21)2

= 1 122 (1 102) (1 82) (1 62) (1 42)(1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121)

= 6561 + 1620 + 100 = 8281

  • 1012 = 1 912 = 1 182(1 812) = 1 162(1 712 ) = 1 142 (1 612) = 1 122 (1 51)2

= 1 122 (1 102) (41)2 = 1 122 (1 102) (1 82) (1 31)2

= 1 122 (1 102) (1 82) (1 62) (1 21)2

= 1 122 (1 102) (1 82) (1 62) (1 42)(1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121)

= 8281 + 1820 + 100 = 10201

[ad#ad-2]

Squaring: A New Way - Gonit Sora

http://gonitsora.com/squaring-new-way/

अगला लेख: unique art : piyush goel introduced mirror image writing style



शब्दनगरी पर हो रही अन्य चर्चायें
28 फरवरी 2017
P
Piyush Goel
28 फरवरी 2017
28 फरवरी 2017
New Squaring Method – ρiγush's mατhεmatιζs
28 फरवरी 2017
25 मार्च 2017
Bhagwad Gita in Mirror ImagePiyush Goel has written Bhagwad Gita in mirror image.Who was he motivated to take upon such an unique way? He says that in the year 2000 an accident changed his life. In 2003 there was a Katha organized on Shreemad Bhagwad Gita , he used to go
25 मार्च 2017
आसान हिन्दी  [?]
तीव्र हिंदी  [?]
ऑनस्क्रीन कीबोर्ड  [?]
हिन्दी टाइपिंग  [?]
डिफ़ॉल्ट कीबोर्ड  [?]

(फोन के लिए विकल्प)
X
1 2 3 र्4 ज्ञ5 त्र6 क्ष7 श्र8 (9 )0 --   =
q w e r t y u i o p [   ]
a s d िfि g h  j k l ; '  \
  z x c  v  b n m ,, .. ?/ एंटर
शिफ्ट                                                         शिफ्ट बैकस्पेस
x